

Computer Science at Cox Green 2017-2018 Curriculum Plan

Key Stage 4 Year 10

Term 1	Term 2	Term 3	Term 4	Term 5	Term 6
2.1 Computational	2.2 Programming	2.3 Producing robust	2.4 Computational logic	2.5 Translators and	2.6 Data representation
thinking, algorithms and	techniques	programs		facilities of languages	
programming		p. og. a		Tabilities of falliguages	
Algorithms * Programming techniques Producing robust programs Computational logic Translators and facilities of languages Data representation	 the use of variables, constants, operators, inputs, outputs and assignments the use of the three basic programming constructs used to control the flow of a program: sequence, selection and iteration (count and condition controlled loops) the use of basic string manipulation the use of basic file handling operations: the use of sQL to search for data the use of arrays (or equivalent) when solving 	 defensive design considerations: input sanitisation/validation planning for contingencies anticipating misuse authentication maintainability: comments; indentation the purpose of testing types of testing: iterative; final/terminal; how to identify syntax and logic errors selecting and using suitable test data. 	 why data is represented in computer systems in binary form simple logic diagrams using the operations AND, OR and NOT truth tables combining Boolean operators using AND, OR and NOT to two levels applying logical operators in appropriate truth tables to solve problems applying computing-related mathematics: +; -; /; Exponentiation (^) MOD DIV 	 characteristics and purpose of different levels of programming language, including low level languages the purpose of translators the characteristics of an assembler, a compiler and an interpreter common tools and facilities available in an integrated development environment (IDE): editors, error diagnostics; run-time environment; translators. 	Units • bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte, petabyte • how data needs to be converted into a binary format to be processed by a computer. Numbers • how to convert positive denary whole numbers (0–255) into 8 bit binary numbers and vice versa • how to add two 8 bit binary integers and explain overflow errors which may occur • binary shifts • how to convert positive denary whole numbers (0–255) into 2 digit hexadecimal numbers

	problems including bath				and vice yers
	problems, including both				and vice versa
	one and two dimensional				how to convert from
	arrays				binary to hexadecimal
	how to use sub				equivalents and vice versa
	programs (functions and				check digits.
	procedures) to produce				Characters
	structured code				 the use of binary codes
	• the use of data types:				to represent characters
	 the common arithmetic 				the term 'character-set'
	operators				the relationship
	• the common Boolean				between the number of
	operators.				bits per character in a
					character set and the
	Assessment:	Assessment:	Assessment:	Assessment:	number of characters
Assessment:	Exam board assessment	Exam board assessment	Exam board assessment	Exam board assessment	which can be represented
Exam board assessment	material	material	material	material	(for example ASCII,
material					extended ASCII and
	Skills:	Skills:	Skills:	Skills:	Unicode).
Skills:	Numeracy, Programming.	Numeracy, Programming.	Numeracy, Programming.	Numeracy, Programming.	Images
Numeracy, Programming.	Sequencing, Problem	Sequencing, Problem	Sequencing, Problem	Sequencing, Problem	 how an image is
Sequencing, Problem	solving	solving	solving	solving	represented as a series of
solving					pixels represented in
	SMSC/ British Values:	SMSC/ British Values:	SMSC/ British Values:	SMSC/ British Values:	binary
SMSC/ British Values:	Effects of ICT on society.	Effects of ICT on society.	Effects of ICT on society.	Effects of ICT on society.	metadata included in
Effects of ICT on society.	Investigating moral values	Investigating moral values	Investigating moral values	Investigating moral values	the file
Investigating moral values	and ethical issues.	and ethical issues.	and ethical issues.	and ethical issues.	• the effect of colour
and ethical issues.	Copyright Laws: DPA	Copyright Laws: DPA	applying computing-	applying computing-	depth and resolution on
Copyright Laws: DPA	Computer Misuse Act.	Computer Misuse Act.	related mathematics	related mathematics	the size of an image file.
Computer Misuse Act.	Respect.	Respect.			Sound
Respect.	Explain the effects on	Explain the effects on			 how sound can be
Explain the effects on	society of gaming.	society of gaming.			sampled and stored in
society of gaming.					digital form
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					 how sampling intervals
	L		L	L	I G

		and other factors affect
		the size of a sound file
		and the quality of its
		playback:
		Compression
		 need for compression
		types of compression:

Enrichment/Extra Curriculum:

• We run additional workshops to develop skills during the Computer Club and link to a number of businesses including the O2 and CISCO Challenge.

Computer Science at Cox Green 2017-2018 Curriculum Plan

Key Stage 4 Year 11

Term 1	Term 2	Term 3	Term 4	Term 5	Term 6
Content of Computational	thinking, algorithms and	2.5 Translators and	2.6 Data representation	GCSE Revision topics	GCSE Exam
programming Coursework Unit.		facilities of languages	Units		Revision
		 characteristics and 	• bit, nibble, byte,		
Learners will need to create	suitable algorithms which	purpose of different	kilobyte, megabyte,	Computer systems	
will provide a solution to th	e problems identified in	levels of programming	gigabyte, terabyte,	1. Systems Architecture	
the task. They will then cod	e their solutions in a	language, including low	petabyte	2. Memory	
suitable programming langu	uage. The solutions must be	level languages	 how data needs to be 	3. Storage	
tested at each stage to ensu	ure they solve the stated	the purpose of	converted into a binary	4. Wired and wireless	
problem and learners must	use a suitable test plan	translators	format to be processed by	networks	
with appropriate test data.		 the characteristics of an 	a computer.	5. Network topologies,	
The code must be suitably a	annotated to describe the	assembler, a compiler and	Numbers	protocols and layers	
process. Test results should	be annotated to show how	an interpreter	 how to convert positive 	6. System security	
these relate to the code, th	e test plan and the original	 common tools and 	denary whole numbers	7. System software	
problem.		facilities available in an	(0–255) into 8 bit binary	8. Ethical, legal, cultural	
Learners will need to provid	de an evaluation of their	integrated development	numbers and vice versa	and environmental	
solution based on the test of	evidence.	environment (IDE):	how to add two 8 bit	concerns	
Learners should be encoura	ged to be innovative and	oeditors	binary integers and		
creative in how they approa	ach solving the tasks.	orror diagnostics	explain overflow errors	Computational thinking,	
3.1 Programming technique	es	run-time environment	which may occur	algorithms and	
how to identify and us	e variables, operators,	translators.	binary shifts	programming	
inputs, outputs and ass	signments		 how to convert positive 	1. Algorithms	
how to understand and	d use the three basic		denary whole numbers	2. Programming	
programming construc	ts used to control the flow		(0–255) into 2 digit	techniques	
of a program: Sequenc	e; Selection; Iteration	Assessment:	hexadecimal numbers	3. Producing robust	
 how to understand and 	d use suitable loops	Exam board assessment	and vice versa	programs	
including count and co	ndition controlled loops	material	how to convert from	4. Computational logic	

- how to use different types of data, including Boolean, string, integer and real, appropriately in
- solutions to problems
- how to understand and use basic string manipulation
- how to understand and use basic file handling operations:
- how to define and use arrays (or equivalent) as appropriate when solving problems
- how to understand and use functions/sub programs to create structured code.

3.2 Analysis

- how to analyse and identify the requirements for a solution to the problem
- how to set clear objectives that show an awareness of the need for real world utility
- how to use abstraction and decomposition to design the solution to a problem
- how to identify the data requirements for their system
- how to identify test procedures to be used during and after development to check their system against the success criteria
- how to use validation to ensure a robust solution to a problem.

3.3 Design

- how to design suitable algorithms to represent the solution to a problem
- how to design suitable input and output formats and navigation methods for their system
- how to identify suitable variables and structures with appropriate validation for their system
- how to use appropriate data types in their system

Skills:

Numeracy, Programming. Sequencing, Problem solving

SMSC/ British Values:
Effects of ICT on society.
Investigating moral values
and ethical issues.
Copyright Laws: DPA
Computer Misuse Act.
Respect.
Explain the effects on
society of gaming.

binary to hexadecimal equivalents and vice versa

check digits.Characters

- the use of binary codes to represent characters
- the term 'character-set'
- the relationship between the number of bits per character in a character set and the number of characters which can be represented (for example ASCII, extended ASCII and Unicode).

Images

- how an image is represented as a series of pixels represented in binary
- metadata included in the file
- the effect of colour depth and resolution on the size of an image file.

Sound

- how sound can be sampled and stored in digital form
- how sampling intervals and other factors affect the size of a sound file

- 5. Translators and facilities of languages
- **6.** Data representation

Assessment: Exam board assessment material Past Papers Help exams

Skills: Numeracy, Programming. Sequencing, Problem solving

SMSC/ British Values:
Effects of ICT on society.
Investigating moral values
and ethical issues.
Copyright Laws: DPA
Computer Misuse Act.
Respect.
Explain the effects on
society of gaming.

•	how to use functions/sub programmes to produce
	structured reusable code

• how to select suitable techniques for the development of the solution.

3.4 Development

- how to develop a solution to the identified problem using a suitable programming language(s)
- how to demonstrate testing and refinement of the code during development
- how to explain the solution using suitable annotation and evidence of development
- how to use suitable techniques to solve all aspects of the problem
- how to take a systematic approach to problem solving
- how to deploy practical techniques in an efficient and logical manner
- how to show an understanding of the relevant information by presenting evidence of the development of their solutions
- how to show an understanding of the technical terminology/concepts that arise from their investigation through analysis of the data collected
- how to use the terminology/concepts surrounding their topic and contained in the information collected correctly when it comes to producing analysis in the supporting script.

3.5 Testing and evaluation and conclusions

- how to produce a full report covering all aspects of the investigation
- how to present the information in a clear form

and the quality of its playback: sample size; bit rate; sampling frequency.

Compression

- need for compression
- types of compression: lossy; lossless.

Assessment:

Exam board assessment material

Skills:

Numeracy, Programming. Sequencing, Problem solving

SMSC/ British Values:
Effects of ICT on society.
Investigating moral values
and ethical issues.
Copyright Laws: DPA
Computer Misuse Act.
Respect.
Explain the effects on
society of gaming.

which is understandable by a third party and			
which is easily navigatable			
 how to critically appraise the evidence that they 			
have presented			
how to test their own solution			
 how to present their evaluation in a relevant, 			
clear, organised, structured and coherent format			
how to use specialist terms correctly and			
appropriately			
 how to present a conclusion to the report 			
how to justify their conclusions based on the			
evidence provided			
·			
Skills:			
Numeracy, Programming.			
Sequencing, Problem solving			
Thinking abstractly – removing unnecessary			
detail			
Thinking ahead – identifying preconditions and			
inputs and outputs			
Thinking procedurally – identifying components			
of problems and solutions			
Thinking logically – predicting and analysing			
problems			
Thinking concurrently – spotting and using			
similarities.			
Enrichment/Extra Curriculum:	<u> </u>	<u>,</u>	'

• We run additional workshops to develop skills during the Computer Club and link to a number of businesses including the O2 and CISCO Challenge.